Heat suppresses activation of an auxin-responsive promoter in cultured guard cell protoplasts of tree tobacco.
نویسندگان
چکیده
Cultured guard cell protoplasts (GCP) of tree tobacco (Nicotiana glauca) comprise a novel system for investigating the cell signaling mechanisms that lead to acquired thermotolerance and thermoinhibition. At 32 degrees C in a medium containing an auxin (1-naphthaleneacetic acid [NAA]) and a cytokinin (6-benzylaminopurine), GCP expand, regenerate cell walls, dedifferentiate, and divide. At 38 degrees C, GCP acquire thermotolerance within 24 h, but their expansion is limited and they neither regenerate walls nor reenter the cell cycle. These putative indicators of auxin insensitivity led us to hypothesize that heat suppresses induction of auxin-regulated genes in GCP. Protoplasts were transformed with BA-mgfp5-ER, in which the BA auxin-responsive promoter regulates transcription of mgfp5-ER encoding thermostable green fluorescent protein (GFP) or with a similar 35S-cauliflower mosaic virus constitutive promoter construct. Heat suppressed NAA-mediated activation of BA. After 21 h at 32 degrees C in media with NAA, 49.0% +/- 3.9% of BA-mgfp5-ER transformants strongly expressed GFP; expression percentages were similar to those of 35S-mgfp5-ER transformants at 32 degrees C or 38 degrees C. After 21 h at 38 degrees C in media with NAA, 7.9% +/- 1.6% of BA-mgfp5-ER transformants weakly expressed GFP, similar to GCP cultured at 32 degrees C in media lacking NAA. Expression at 38 degrees C was not increased by incubating for 48 h or increasing NAA concentrations 20-fold. After 9 to 12 h at 38 degrees C, BA was no longer activated when cells were transferred to 32 degrees C. Heat-stressed cells accumulate reactive oxygen species, and hydrogen peroxide (H(2)O(2)) suppresses auxin-responsive promoter activation in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. H(2)O(2) did not suppress BA activation at 32 degrees C, nor did superoxide and H(2)O(2) scavengers prevent BA suppression at 38 degrees C.
منابع مشابه
The identification of DNA binding factors specific for as-1-like sequences in auxin-responsive regions of parA, parB and parC.
We have identified the auxin-responsive region (Aux-RR) of the parA promoter; it is derived from a gene that is induced by auxin in tobacco mesophyll protoplasts. By analyses of gain-of-function and point mutations in transgenic tobacco plants, we showed that an as-1-like sequence was required, but not alone sufficient, for auxin responsiveness of the parA promoter, as has been also shown for t...
متن کاملModifying the lntracellular Auxin Concentration'
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates (J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128). We have investigated this hypothesis in detail using tobacco (Nicofiana tabacum) mesophyll protoplasts isolated from plants transformed with the ro...
متن کاملAuxin inducibility and developmental expression of axi 1: a gene directing auxin independent growth in tobacco protoplasts.
We describe the characterization of axi 1, a tobacco gene isolated by activation T-DNA tagging which apparently plays a role in auxin action. Upon deregulated expression, axi 1 confers on protoplasts the ability to grow in culture not only in the absence of auxin but also in high auxin concentrations where maximal frequencies of cell division are not observed in wild-type protoplasts. In wild-t...
متن کاملComposite structure of auxin response elements.
The auxin-responsive soybean GH3 gene promoter is composed of multiple auxin response elements (AuxREs), and each AuxRE contributes incrementally to the strong auxin inducibility to the promoter. Two independent AuxREs of 25 bp (D1) and 32 bp (D4) contain the sequence TGTCTC. Results presented here show that the TGTCTC element in D1 and D4 is required but not sufficient for auxin inducibility i...
متن کاملAux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.
A highly active synthetic auxin response element (AuxRE), referred to as DR5, was created by performing site-directed mutations in a natural composite AuxRE found in the soybean GH3 promoter. DR5 consisted of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element. The DR5 AuxRE showed greater auxin responsiveness than a natural composite AuxRE and the GH3 promoter when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 145 2 شماره
صفحات -
تاریخ انتشار 2007